Fabrication of Multiferroic Co-Substituted BiFeO3 Epitaxial Films on SrTiO3 (100) Substrates by Radio Frequency Magnetron Sputtering

نویسندگان

  • Husne Ara Begum
  • Hiroshi Naganuma
  • Mikihiko Oogane
  • Yasuo Ando
چکیده

The 10 at.% Co-substituted BiFeO₃ films (of thickness 50 nm) were successfully prepared by radio frequency (r.f.) magnetron sputtering on SrTiO₃ (100) substrates with epitaxial relationships of [001](001)Co-BiFeO₃//[001](001)SrTiO₃. In this study, a single phase Co-substituted BiFeO₃ epitaxial film was fabricated by r.f. magnetron sputtering. Sputtering conditions such as Ar, O₂ gas pressure, annealing temperature, annealing atmosphere, and sputtering power were systematically changed. It was observed that a low Ar gas pressure and low sputtering power is necessary to suppress the formation of the secondary phases of BiOx. The Co-substituted BiFeO₃ films were crystalized with post-annealing at 600 °C in air. The process window for single phase films is narrower than that for pure BiFeO₃ epitaxial films. By substituting Fe with Co in BiFeO₃, the magnetization at room temperature increased to 20 emu/cm³. This result suggests that Co-substituted BiFeO₃ films can be used in spin-filter devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of heteroepitaxial LaNiO3 thin films on a SrTiO3 substrate for growing an artificial superlattice with RF sputtering

High-quality heteroepitaxial LaNiO3 (LNO) thin films were successfully grown on SrTiO3 (STO) substrates with RF-magnetron sputtering deposition at substrate temperatures in a range 150–650 ◦C. Azimuthal scans around the surface Bragg peak of the film and lattice images from a high-resolution transmission electron microscope (HRTEM) show that a well epitaxial relationship between film and substr...

متن کامل

DEPOSITION AND CHARACTERIZATION OF MULTIFERROIC BiFeO3 THIN FILMS

Title of Dissertation: DEPOSITION AND CHARACTERIZATION OF MULTIFERROIC BiFeO3 THIN FILMS Junling Wang, Doctor of Philosophy, 2005 Dissertation Directed By: Professor Manfred Wuttig, Department of Materials Science and Engineering Multiferroics, defined as materials with coexistence of at least two of the electric, elastic, and magnetic orders, have attracted enormous research activities recentl...

متن کامل

Preparation and characterization of self-assembled percolative BaTiO3–CoFe2O4 nanocomposites via magnetron co-sputtering

BaTiO3-CoFe2O4 composite films were prepared on (100) SrTiO3 substrates by using a radio-frequency magnetron co-sputtering method at 750 °C. These films contained highly (001)-oriented crystalline phases of perovskite BaTiO3 and spinel CoFe2O4, which can form a self-assembled nanostructure with BaTiO3 well-dispersed into CoFe2O4 under optimized sputtering conditions. A prominent dielectric perc...

متن کامل

Ferroelectric domain structures of epitaxial „001... BiFeO3 thin films

Ferroelectric domain structures of epitaxial BiFeO3 thin films on miscut 001 SrTiO3 substrates have been studied by transmission electron microscopy. BiFeO3 on 0.8° miscut substrates are composed of both 109° and 71° domains; in contrast, only 71° stripe domains are observed in BiFeO3 on 4° miscut 001 SrTiO3 substrates. The domain width in BiFeO3 on 4° miscut substrates increases as film thickn...

متن کامل

Twin wall distortions through structural investigation of epitaxial BiFeO3 thin films

In this work, epitaxial (001) BiFeO3 thin films were deposited on SrTiO3 and TbScO3 single-crystal substrates and analyzed with high-resolution x-ray diffraction—reciprocal space mapping. A basic method was developed to extract structural details of the as-grown BiFeO3 film, including (i) epitaxial strain, (ii) ferroelastic domains, and (iii) lattice rotations. After demonstrating the method, e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2011